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Abstract

An abdominal aortic aneurysm is a localized bulge or swelling in the lower part of the aorta,
the main blood vessel of the human body that goes from the left ventricle of the heart down
through the chest and the tummy, where it splits in two smaller vessels called iliac arteries.
They usually remain asymptomatic until rupture, which makes them a life-threatening disease
with an overall mortality of more than 80%. Layer-specific experimental data for human aortic
tissue suggest that, in aged arteries and arteries with non-atherosclerotic intimal thickening,
the innermost layer of the aorta increases significantly its stiffness and thickness, becoming
load-bearing. However, there are very few computational studies of aortic abdominal aneurysms
(AAAs) that take into account the mechanical contribution of the three layers that make up the
aneurysmal tissue. In this technical project, a three-layered finite element model is proposed
from the simplest (uniaxial) stress state, to geometrically parametrized models of AAAs with
different asymmetry values. Comparisons are made between a three-layered artery wall, and a
mono-layered intact artery, whose constitutive parameters stand for the mean mechanical behavior
of the three layers. Likewise, the response of our idealized geometries is compared with similar
models. The mechanical contributions of adventitia, media and intima, are also analyzed for
the three-layered aneurysms through the evaluation of the mean stress absorption percentage.
Results show the relevance of considering the inclusion of tunica intima in multi-layered models of
AAAs for getting more accurate results in terms of peak wall stresses and displacements. The last
part of this investigation contains a Fluid-Structure Interaction study in parametrized abdominal
aortic aneurysms, considering a hyperelastic anisotropic constitutive law for the aneurysmal wall.
Because of the high computational cost that it would attain to model a full cardiac cycle in a
three-layered aneurysm considering the Fluid-Structure Interaction, only a mono-layered aneurysm
is simulated within this final part of the project. As in the previous section, comparisons are
made between elastic, hyperelastic isotropic and hyperelastic anisotropic artery walls in terms of
stresses and displacements.
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Resumen

El aneurisma de la aorta abdominal es un bulto o hinchazón localizada en la parte inferior de
la aorta, el principal vaso sanguíneo del cuerpo humano que nace en el ventrículo izquierdo del
corazón y viaja a través del pecho y el abdomen hasta llegar a la bifuración iliaca, donde se separa
en dos vasos de menor tamaño que reciben el nombre de arterias iliacas. Los aneurismas suelen
permanecer asintomaticos hasta rotura, lo que les convierte en una enfermedad muy peligrosa, con
una mortalidad media asociada de más del 80%. Recientes campañas experimentales llevadas a
cabo sobre las capas que forman el tejido aórtico sugieren que, en arterias envejecidas y arterias con
hiperplasia intimal, la capa interna de la aorta incrementa significativamente su espesor y rigidez,
siendo capaz de soportar cargas externas. No obstante, hay muy pocos estudios computacionales
sobre el aneurisma de la aorta abdominal que tengan en cuenta la contribución mecánica de
las tres capas que forman el tejido arterial. En este proyecto técnico se propone un modelo
de elementos finitos tricapa desde el estado tensional más simple, el uniaxial, hasta modelos
que involucran geometrías idealizadas de aneurisma con diferentes valores de asimetría del saco.
Se realizan comparaciones entre un modelo tricapa y un modelo monocapa, cuyos parámetros
constitutivos representan el comportamiento mecánico medio equivalente de las tres capas. De la
misma forma, la respuesta mecánica de estos modelos es comparada con los resultados obtenidos
por otros autores para estudios computacionales de aneurismas de similares características. La
contribución mecánica de cada capa es también analizada en los modelos tricapa a través de la
evaluación del procentaje de absorción media. Los resultados ponen de manifiesto la necesidad
de considerar la inclusión de la capa intima en modelos multicapa para obtener resultados más
precisos en cuanto a tensiones máximas y desplazamientos se refiere. La parte final de esta
investigación contiene una simulación interacción fluido-estructura en una geometría de aneurisma
idealizada, considerando un modelo constitutivo hiperelástico anisótropo para la pared arterial.
Debido al elevado coste computacional que supondría modelar un ciclo cardiaco completo en
un aneurisma tricapa considerando la interacción fluido-estructura, simplemente se simula un
aneurisma monocapa dentro de esta parte del proyecto. Al igual que en el apartado anterior, se
hacen comparaciones entre una pared arterial elastico-lineal, hiperelastica isotropa e hiperelastica
anisotropa en términos de tensiones y desplazamientos máximos.
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Resumo

O aneurisma da aorta abdominal é un vulto ou inchazón localizada na parte inferior da aorta, o
principal vaso sanguíneo do corpo humano que nace no ventrículo esquerdo do corazón e viaxa a
través do peito e o abdome ata chegar á bifurcación ilíaca, onde se separa en dous vasos de menor
tamaño que reciben o nome de arterias ilíacas. Os aneurismas adoitan permanecer asintomáticos
ata a rotura, o que os converte nunha enfermidade moi perigosa, cunha mortaldade media asociada
de máis do 80%. Recentes campañas experimentais levadas a cabo sobre as capas que forman
o tecido aórtico suxiren que, en arterias envellecidas e arterias con hiperplasia intimal, a capa
interna da aorta incrementa de maneira significativa o seu espesor e rixidez, sendo capaz de
soportar cargas externas. Con todo, hai moi poucos estudos computacionais sobre o aneurisma da
aorta abdominal que teñan en conta a contribución mecánica das tres capas que forman o tecido
arterial. Neste proxecto técnico proponse un modelo de elementos finitos tricapa dende o estado
tensorial máis simple, o uniaxial, ata modelos que involucran xeometrías idealizadas de aneurisma
con diferentes valores de asimetría do saco. Realízanse comparacións entre un modelo tricapa e un
modelo monocapa, cuxos parámetros constitutivos representan o comportamento mecánico medio
equivalente das tres capas. Da mesma forma, a resposta mecánica destes modelos é comparada
cos resultados obtidos por outros autores para estudos computacionais de aneurismas de similares
características. A contribución mecánica de cada capa é tamén analizada nos modelos tricapa
a través da avaliación da porcentaxe de absorción media. Os resultados poñen de manifesto a
necesidade de considerar a inclusión da capa íntima en modelos multicapa para obter resultados
máis precisos en canto a tensións máximas e desprazamentos se refire. A parte final desta
investigación contén unha simulación interacción fluído-estrutura nunha xeometría de aneurisma
idealizada, considerando un modelo constitutivo hiperelástico anisótropo para a parede arterial.
Debido ao eleveado custo computacional que supoñería modelar un ciclo cardiaco completo nun
aneurisma tricapa, dentro desta sección do proxecto só se simula un aneurisma monocopa. Do
mesmo xeito que no apartado anterior, fanse comparacións con diferentes modelos de material.
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1

Introduction

1.1 State-of-the-art

An abdominal aortic aneurysm (AAA) is a balloon-like, localized enlargement of the aorta that
bulges out beyond the normal diameter of the blood vessel (figure 1.1). AAAs affect about 3% of
the world population over the age of 50 [1]. Associated risk factors are mostly lifestyle-related
(smoking, dyslipidemia, high blood pressure), although an heritable component can also play
a role. They usually remain asymptomatic until rupture, which can lead to life-threatening
internal bleeding with an in-hospital mortality of about 40% and a pre-hospitalization overall
mortality of 80% [2]. Repair of an AAA may be done either by open surgery or endovascular
aneurysm repair (EVAR). Open repair, as any surgical procedure, may associate a non-negligible
rate of complications such as bleeding during or after surgery, myocardial infarction, respiratory
impairment or graft infection. On the other hand, EVAR is a minimally invasive technique that
only requires small incisions in the groin, but requires a more strict postoperative surveillance
over time.

The current approach to assess the risk of rupture and to determine whether the patient
should undergo surgical repair or not is a dimensional criterion based on the maximum axial
diameter of the lesion (aortic size). If the maximum diameter increases more than 0.5–1 cm in one
year, or whether it reaches 5.0 cm in women or 5.5 cm in men, surgical repair will be necessary
[3–5]. Nonetheless, about 13% of AAAs with an aortic size of less than 5 cm rupture, whereas
54% of those over 7 cm may not rupture over long periods. Therefore, a more reliable parameter
is needed for the assessment of the risk of AAA rupture. Peak wall stresses are suggested by
many studies [6–8] as a more suitable parameter than the current diameter criterion. However,
peak wall stresses cannot be measured in complex geometries just by applying simple analytic
techniques, hence, numerical modeling must be used. In this respect, the finite element analysis
provides a convenient numerical tool to calculate approximate wall stresses that facilitate the
evaluation of the rupture potential of AAAs.

As shown in figure 2.16c, the aortic wall consist of three layers: adventitia, the outermost
layer; tunica media, which is the medial layer, and tunica intima, which is the innermost layer.
In young human arteries and arteries of laboratory animals, which are experimentally used to



2 Chapter 1

(a) Computed tomography (CT) image
reconstruction of an abdominal aortic
aneurysm. Front view.

(b) CT sectional cut with contrast demonstrating
aneurysm dilatation and a disection of the ascending
aorta.

Figure 1.1: Front and top view CT reconstructions of real AAA cases (adapted from https://canadiem.
org/).

validate the numerical solutions, only the adventitia and media are load-bearing layers and the
intima is just a thin layer made up mostly of endothelial cells. However, in aged arteries, the
intima attains a significant thickness and the three layers become load-bearing. This is caused
by diffuse intimal thickening or intimal hyperplasia, which is considered to be the precursor
of atherosclerosis and produces the collagenization of the intima [9]. Some studies explain the
thickening as a compensatory response to the wall shear reduction, so the artery decreases the
luminal diameter in order to increase the blood flow and consequently restores the initial wall
shear stress configuration [10]. Nevertheless, there are very few computational studies of AAAs
that take into account the mechanical contribution of the intimal layer.

Even from the development of multi-layer constitutive relations for arterial walls by Holzapfel
et al. [11], and the obtaining of the layer-specific material parameters by Weisbecker et al. [12],
the intima has been excluded from numerical studies due to its small thickness in young arteries
[13] and the high computational cost that implies the proper discretization of a highly geometric
non-linear, multi-layered and thin domain. Prior studies have performed isotropic finite element
simulations considering elastic or hyperelastic constitutive laws in mono-layered arterial walls, like
Scotti el al. [14] and Raghavan et al. [15]. Other authors carried out more advanced computational
models implementing the anisotropy of the arterial wall in patient-specific geometries like Xenos
et al. [16] for a mono-layered AAA wall, Rodriguez et al. [17] for different idealized mono-layered
AAAs, or Alaustre et al. [13] for a two-layered iliac artery, in which only adventitia and media
were taken into account. The latest advances in medical imaging technology have made it possible

https://canadiem.org/
https://canadiem.org/


1.1. State-of-the-art 3

Figure 1.2: Histomechanical idealization of a healthy elastic artery with non-atherosclerotic intimal
thickening (taken from [11]).

to perform not only finite element analyses on digital reconstructed patient-specific aneurysms
but also experimental testing on rubber aneurysms, like Joldes et al. [18], where wall stresses were
computed for different mono-layered geometries of rubber AAAs. Other studies on hyperelastic
constitutive laws also include the numerical implementation of residual stresses, like Ahamed et
al. [19] for evaluating wall stresses using mono-layered patient-specific geometries, or Labrosse et
al. [20], where residual stresses are obtained by experimental testing on pressurized ascending,
thoracic and abdominal circular samples. However, none of them consider the increase in stiffening
and thickness of the innermost layer of the aorta.

The first three-layered models assumed an isotropic linear elastic response for all the layers,
like Gao et al. [21, 22] for three-layered aneurysmal and non-aneurysmal aortic archs, where
the Young’s modulus of the medial layer was assumed to be three times larger than that of the
intimal and adventitial layer. Gao et al. also peformed FSI analyses on two dimensional (2D)
axisymmetric geometric models of stented three-layered aneurysms [23]. Simsek et al. [24] and
Gholipour et al. [25] evaluated the rupture potential of three-layered idealized aneurysmal and
non-aneurysmal geometries assuming different hyperelastic isotropic material properties for each
layer. Recent studies analyzed the inclusion of residual stresses in three-layered aneurysms, like
Pierce et al. [26] for a patient-specific geometry. Other researchers like Strbac et al. [27] even
studied how to improve the finite element codes for computing faster, and more accurate solutions
in three-layered patient-specific geometries. Nonetheless, the structural role played by tunica
intima during the development of atherosclerosis has not been clarified yet.

This work proposes a three-layered model that allows to study the influence of non-atherosclerotic
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intimal thickening from a mechanical point of view on different parametrized geometrical models
of AAAs. The calibration of the material model, which is considered hyperelastic anisotropic, is
done through finite element simulations of uniaxial tests of aorta strips cut in the circumferential
and axial direction, and the inflation of plane strain aorta rings subjected to systolic blood pres-
sure. Then, peak wall stresses and displacements are computed in three different idealized AAA
geometries considering a three-layered, and an intact monolayered human aorta wall. As loading
conditions, an in vivo luminal pressure waveform reproduced from [28] was applied. Additionally,
comparisons between the three-layered and the intact wall are made, as well as between different
material models (elastic and hyperelastic isotropic) from other studies. Finally the stiffness of
each layer that make up the aneurysmal tissue is evaluated and compared through its mean stress
absorption percentage.

1.2 Constitutive behavior of arterial tissue

Constitutive modeling of arterial tissue has undergone a significative evolution over the past decade.
Early-modeled aneurysmal tissue was characterised as a single layer linear elastic material [29–32].
The nonlinear elastic assumption came after the uniaxial testing of aortic tissue specimens carried
out by Raghavan and Vorp [33], where the mechanical behavior of the arterial wall was, for the
first time, modeled as hyperelastic, with a constitutive law based on a simplified criterion derived
from the Mooney-Rivlin strain energy function. Thereafter, the vast majority of the computational
studies of fully developed aneurysms assumed isotropy [34–37]. A high degree of anisotropy was
subsequently noticed by Vande Geest et al. [38] after performing biaxial testing to characterize
the mechanical properties of aortic tissue in the longitudinal and circumferential direction. Then,
the obtained experimental data would be fitted to a four parameter exponential strain function
proposed by Vito and Hickey [39]. Later on, the understanding of the arterial histology by means
of extensive experimental data has led to new and more accurate constitutive models that make it
possible to analyze the multi-layered nature of the arterial wall as an anisotropic fiber-reinforced
material [40]. The aforementioned continuum approach was considered in this study by means
of the constitutive model developed by Holzapfel et al. [40] and Gasser et al. [11]. This model
asserts that each artery layer may be understood as a composite reinforced material constituted
by two families of collagen fibers embedded in a soft incompressible matrix, which is mostly made
up of elastin. The collagen fibers are arranged in spirals and symmetrically oriented with respect
to the circumferential direction. The strain energy function used to model each layer of the artery
wall is given by

Ψ = Ψiso + Ψaniso, (1.1)

where
Ψiso = µ

2
(
Ī1 − 3

)
(1.2)

Ψaniso = k1

2k2

N=2∑
i=1

[
exp

(
k2Ē

2
i

)
− 1
]

(1.3)
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with
Ēi = κĪ1 + (1− 3κ)

(
Ī4i − 1

)
(1.4)

where
Ī4i = a0i ⊗ a0i : C̄. (1.5)

Ψ can be divided in an isotropic part, Ψiso, which represents the energy stored in the non-
collagenous soft matrix, and anisotropic part, Ψaniso, which provides the energy stored in the
collagen fibers. The non-collagenous soft matrix is modeled as an incompressible isotropic neo-
Hookean material, with µ > 0 as the shear modulus in the undeformed configuration, and Ī1 as
the first strain invariant of a modified right Cauchy-Green tensor, C̄ = F̄T F̄, where F̄ comes
from a multiplicative decomposition of the deformation gradient F =

(
J

1
3 I
)
F̄, where J 1

3 and
F̄ represent the volumetric and isochoric part of the deformation gradient, respectively, and I
is a second-order unit tensor. In equation (1.3) the strain energy stored in the collagen fibers
is defined as an exponential function, where N is the number of fiber families of each layer. In
accordance with Schriefl et al. [41], a two-fiber family is considered for all the layers in this
study. k1 > 0 is a stress-like parameter, while k2 > 0 is a dimensionless parameter, and both
are determined from mechanical tests of the tissue. Ēi, which stands for the Green-Lagrange
strain-like quantity, represents the strain in the direction defined by the mean orientation of each
fiber family, which is in turn denoted by the vector a0i. The parameter κ ∈ [0, 1/3] is also unitless
and describes the level of dispersion of the fiber directions. According to the value of κ, collagen
fibers may be perfectly aligned (κ = 0), which means that there is no dispersion, or randomly
distributed (κ = 1/3), which corresponds with a spherical distribution of the density function
and the material becomes isotropic. The three-dimensional graphical representation of the kappa
density function is shown in figure 1.3. κ and a0i are determined from histological data. Finally,
Ī4i is the pseudo-invariant of C̄.

1.3 Computational modeling

The simulations presented in this technical project were conducted by using the FEM commercial
software Abaqus/Standard 6.14, in which the constitutive model explained previously is built-in
[42]. To check the viability of the posed problem, different geometries were considered. From the
simplest to the most complex one, we developed finite element models of uniaxial tests performed
on rectangular aorta strips cut in the axial and circumferential direction, human aorta plane
strain rings, and finally three different parametrized geometric aneurysms with non-atherosclerotic
intimal thickening. The final part of this work contains a Fluid-Structure Interaction study of
an idealized aneurysm model accomplished through implicitly coupling the aforementioned FEM
code Abaqus, and the CFD solver STAR CCM+ 11.06.
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Figure 1.3: Three-dimensional graphical representation of the orientation of the collagen fibres based on
the transversely isotropic density function (taken from [11]).



2

A multi-layered in-silico mode for rupture risk
evaluation in abdominal aortic aneurysms

2.1 Model calibration. Finite element models of uniaxial test of aorta
strips

Based on the work developed in [11], finite element computations of uniaxial tension tests were
performed on rectangular intact and layer-separated aorta strips with non-athersclerotic intimal
thickening cut in the axial and circumferential direction. The specimens are loaded in the
longitudinal direction and are assumed to be stress free in the undeformed configuration. The
definition of axial and circumferential specimens as well as the computational model configuration
are illustrated schematically in Figure 2.2, while the real test setup is shown in figure 2.1.

(a) Representative axial and circumferential
strips excised from a disected adventitial layer
of the human abdominal aorta.

(b) Macroscopic view of an arterial wall in
the axial direction, with the intima and media
being separated.

Figure 2.1: Preparation of the axial and circumferential specimens during the real test (taken from
[43]).

The referential dimensions of the strips were 20 mm for the length, 6 mm for the width and
a different thickness depending on the layer modeled: 0.68 mm for the intima, 0.94 mm for the
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media and 1.07 mm for the adventitia. The in-plane dimensions are based on the ones provided
in [42], where a rectangular 10x3x0.5 mm adventitial strip is analyzed under uniaxial tension.
However, since we had a maximum thickness of 1.07 mm and we wanted to keep a similar aspect
ratio, the final dimensions of our strips had to be bigger in a factor of two compared to the
benchmark model. Regarding the thicknesses, they are in accordance with the median thicknesses
of the intima, media and adventitia determined by Weisbecker et al [12], where nine abdominal
aortas from patients aged between 61 and 72 with acute non-atherosclerotic intimal thickening,
were tested. The different material constants as well as the orientations of the two families of
fibers considered for the layer-separated and the intact artery wall are summarized in Table 2.1.

Exploiting the symmetry of the problem, only one octave part of the geometry was modeled.
To model the incompressible deformation of the arterial tissue, a total of 12,000 eight node linear
solid hybrid elements (C3D8H) were used for the adventitia, 12,100 for the media and 36,000 for
the intima, with a minimum of three elements through-the-thickness, whereas 220,440 elements
were required for the intact layer models. Regarding the type of element used, it is important to
consider the fact that, the bulk modulus of an incompressible material is much greater than its
shear modulus. Due to this, a displacement-based element is not suitable since a pure hydrostatic
stress state would not produce changes in the displacement field. Therefore, a mixed formulation,
using not only displacement but stress variables, is required to solve the equilibrium equations. For
that purpose, hybrid elements are used in our simulations to model the incompressible behavior
of soft tissue, which is a realisitc assumption since it is mostly made up of water. Values of the
Cauchy stresses and strains were computed for each integration point in the tensile direction. The
results are compared in terms of stress vs strain curves with the experimental results obtained by
Weisbecker et al. [12].

Layer µ(MPa) k1(MPa) k2(−) ϕ(◦) κ(−)
Intima 0.044 10.14 0.00 40.5 0.25
Media 0.028 0.81 12.42 39.1 0.18

Adventitia 0.010 0.38 3.35 40.59 0.11
Intact wall 0.019 5.15 8.64 38.8 0.24

Table 2.1: Constitutive parameters for the layer-separated specimens and the intact (three-layer
composite) wall of the human abdominal aorta (taken from [12]).

Figure 2.3 shows the computed Cauchy stress in the tensile direction for the circumferential
(left) and axial (right) specimens at a total displacement of 2.5 mm. In agreement to the results
obtained by Gasser et al. in [11] no significant change is observed in the thickness of the specimens,
while the width decreases in the middle part of the strips due to the incompressibility constraint.
Despite the similarity of the transition zones at the end of strips, all the specimens show a stiffer
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Figure 2.2: Definition of axial and circumferential specimens and uniaxial tension test configuration
(adapted from [11]). A1 and A2 represent the mean direction of each family of fibers.

response in the circumferential direction. Tunica intima exhibits the maximum stress values of
the layer-separated specimens, reaching longitudinal stresses of 6.5 MPa when it is cut in the
circumferential direction. The adventitial and medial strip, with maximum values of 1 and 1.7
MPa, present a softer behavior than the intimal strip. One of the main reasons for this is the
degree of dispersion of the collagen fibers, κ, which is much higher in the intima (κ = 0.25) than
in any other layer. κ controls the start of the stiffening effect produced by the alignment of the
collagen fibers in the direction of the applied load, therefore, higher values of κ provide a stiffer
response at equal streches. Concerning the intact and the three-layered patch, we observe a
parallel structural response for the first one compared to the above analysed separated intima
layer: the high dispersion of the collagen fibers for this case, κ = 0.24, which is in fact very similar
to the value of the intima layer, κ = 0.25, leads to a macroscopic stiffer behaviour, where fibers do
not need to rotate before carrying load and just a small reduction of the width of the specimen
is noticed. On the other hand, the three-layered patch shows a dissimilar mechanical behaviour
in which we observe noteworthy stress discontinuities between the layers where the intima is
absorbing the largest amount of stress.

Figure 2.4 shows the stress versus stretch response in the direction of the applied load for the
circumferential and axial specimens. The Cauchy stress was computed as σ = Fλ/(TW ), where
F stands for the applied force, T for the thickness of the specimen, W for the width (both in the
undeformed configuration), and λ = l/L represents the stretch in the loading direction, where l
and L are the lengths of the specimen in the deformed and reference configuration, respectively.
The qualitative stress-stretch response is similar to the one reported by Holzapfel et al. [44]
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for coronary arteries, and Weisbecker et al. [12] for the abdominal aorta. As it can be seen,
the intima manifests an early exponential stiffening at low stretches in both circumferential and
axial directions. This stress-stretch response is closely related to the high degree of dispersion
in the collagen fiber directions previously commented, which is in turn, associated with the
collagenization of the innermost hyperelastic layer during the development of the diffuse intimal
thickening of the aorta [9]. Media and adventitia curves show a softer behavior in both directions,
where the exponential stiffening produced by the anisotropic contribution of the collagen fibers
to the strain energy function is delayed in comparison to the intimal layer. For a total Cauchy
stress of 0.7 MPa, the axial specimen of the intimal layer reachs a maximum stretch of 1.24,
while adventitial and medial strips have maximum streches of 1.45 and 1.5, respectively. As for
the three-layered tissue, despite being made up of intima, media and adventitia, its mechanical
reaction is somewhat less stiff in comparison with the intima and the intact wall, probably due to
the loss of strain energy produced during the discontinuous stress migration from tunica intima
to the other two layers. When comparing our computational results to the curves experimentally
obtained by Weisbecker et al., we observe qualitative similarities in the general structural behavior
for all the layers, except for the intact specimen. Regarding the layer-separated strips, we see a
similar structural response for intima, media and adventitia, with a maximum error of 5% for the
medial strip cut in the axial direction. However, the computed stress-stretch curve for the intact
aorta strip cut in the circumferential direction does not match to the experimental ones at all.
The calculated response in the circumferential direction for the intact strip is 78% stiffer than the
real one, probably because the vast majority of the families of collagen fibers are oriented closer
to the axial direction rather than the circumferential, so the assumption of a pure circumferential
alignment has no physical sense. On the other hand, for the intact specimen cut in the axial
direction we got a maximum error of 38%, which we consider is assumable since the dimensions of
the specimens and the load are not the same.

2.2 Human aorta plane strain rings

Before assessing the effects of the intimal thickening in an AAA geometry, a simpler case is studied.
To test the feasibility of the models proposed, a human aorta plane geometry was modeled with
the configuration shown in figure 2.5. The dimensions of the rings were 10 mm for inner radius and
a different thickness depending on the layer modeled. For the layer-separated rings the thickness
of each layer is the same as the ones used previously for the uniaxial test simulations: 0.68, 0.94
and 1.07 mm for intima, media and adventitia, respectively. Plane strain boundary conditions
were applied for all the models.

In order to simulate the end-systolic state, in which the artery undergoes the largest wall
stresses, an internal pressure of 16 kPa (120 mmHg) was implemented. Material constants for the
layer-separated and intact three-layer composite artery wall are collected in Table 2.1. Regarding
the layer-separated models, 1,215 eight-node solid hybrid elements (C3D8H) were used for intima,
486 elements for the media and 748 elements for the adventitia, with a minimum of two elements
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(a) Adventitial strip cut in the circ. direction. (b) Adventitial strip cut in the axial direction.

(c) Medial strip cut in the circ. direction. (d) Medial strip cut in the axial direction.

(e) Intimal strip cut in the circ. direction. (f) Intimal strip cut in the axial direction.

(g) Three layer composite intact patch cut in
the circ. direction.

(h) Three layer composite intact patch cut in
the axial direction.

(i) Three-layered patch cut in the circ. direc-
tion (intima side).

(j) Three-layered patch cut in the axial direc-
tion (intima side).

Figure 2.3: Finite element computations of the Cauchy stress in the tensile direction at a displacement
of 2.5 mm. The magnitude of the depicted stress field is given in MPa. The grey zones are a result of
edge effects caused by the stress concentrations due to the displacement constraint applied on the lateral
face of the specimen.
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(a) Circumferential specimens.
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(b) Axial specimens.

Figure 2.4: Computed Cauchy stress vs stretch curves of the circumferential and axial specimens (solid
curves) and comparison with the curves experimentally obtained by Weisbecker et al. [12] (dashed curves).
IMA (intima-media-adventitia) represents the three-layered tissue patch
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through-the-thickness of each layer. In the intact aorta rings a total of 5700 elements were
required. Circumferential stresses and stretches were computed at each integration point across
the thickness of the artery wall.

Figure 2.5: Scheme of the model configuration for the human aorta plane strain rings (adapted from
[11]).

The computed circumferential stresses produced by an internal pressure of 16 kPa (120 mmHg)
are depicted in Figure 2.6. The absence of residual stresses leads to a pure tension state through
the whole thickness in both the layer-separated and three-layered configurations. Regarding the
layer-separated rings, we observe maximal values at the inner radius of the adventitial ring of
about 0.322 MPa, which decrease to 0.24 MPa at the outer, while the stress distributions of the
media and intima are quite similar at the inner radius, reaching values close to 0.32 MPa, but
differ from the outer radius, where the intima shows slightly higher circumferential stresses that
go up to 0.28 MPa. Furthermore, we notice big differences between the through-the-thickness
circumferential stresses of the intact artery, the two-layered and the three-layered rings, which
are depicted in Figure 2.7. As it can be seen, the intact artery shows an analogous non-linear
stress distribution to the one observed previously for the layer-separated cylinders, with a range
of stress values that goes from 0.017 MPa at the inner surface to 0.012 at the outer. On the other
hand, in agreement with Alastrué et al. [13], we observe again "the discontinuities caused by the
heterogeneity of the two-layered and the three-layered wall". As shown in Figure 2.7, the existing
stress value of 0.224 MPa at the inner part of the intima suddenly drops at the interface with
the media, where it took a value of 0.04 MPa. In the same way, another stress jump is found at
the interface between media and adventitia, but this time not as important as the previous one,
dropping from 0.04 to 0.02 MPa.

The results in terms of internal pressure versus circumferential stretch (pi/λθ) are illustrated in
Figure 2.8. Once more we can see how the internal pressure/circumferential stretch response tends
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to stiffen with increasing κ. As we saw in the uniaxial tests, with an early exponential stiffening,
tunica intima is acting again as the stiffest layer, giving a total circumferential stretch of 1.11
at an internal pressure of 16 kPa, while the adventital layer is the softest with a final stretch of
1.34 for the same internal pressure. The medial layer shows a delayed structural response that is
between the intima and the adventitia, reaching stretch values of 1.25. The three-layered and the
intact rings have a similar pressure/stretch behavior, even if the former one is much stiffer despite
the large stress discontinuities at the interfaces between the layers which produce a decrease of
the stored strain energy in the collagen fibers.

(a) Adventitial ring (b) Medial ring (c) Intimal ring

(d) Intact aorta ring (e) Two-layered aorta ring (f) Three-layered aorta ring

Figure 2.6: Circumferential stress distributions in the aorta plane strain rings at an internal pressure of
16 kPa. The magnitude of the stresses is given in MPa.

2.3 Parametrized idealized geometrical models of AAAs

Once the effects of intimal thickening have been assessed in simpler geometries, a more realistic
shape is needed to take into account the influence of the typical geometrical non-linearity that
characterises fusiform aneurysms, which are the most common ones. For this purpose, an in-house
code [45] was developed. This code uses the application program interface of the open source
CAD/CAE package SALOME [46] to create the digital model of three-dimensional extruded
solid geometries. The code considers all the geometric and physical variables that characterise an
idealized aneurysm, such as length, azymuthal asymmetry, wall thickness, the undilated diameter
at the inlet/outlet sections and the maximum diameter at the midsection of the AAA. The circular
cross sections have the ability to rotate around the three axis, and the geometries are different in
terms of wall heterogeneity and asymmetry, which are depicted by cross sections perpendicular
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Figure 2.7: Through-the-thickness circumferential stresses of the three-layered (IMA), two-layered (MA)
and intact artery rings. Comparison with the results obtained by Alastrué et al. [13] for a two-layered
human iliac artery plane strain ring when an internal pressure of 13.3 kPa is applied without residual
stresses.
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Figure 2.8: Computed internal pressure versus circumferential stretch of the aorta rings at an internal
pressure of 16 kPa.
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to the z-axis, hence coinciding with its centerline. The asymmetry is given by β and is defined
as β = r/R and schematically illustrated in Figure 2.9 as originally proposed by Vorp et al. [7],
where r and R are the radius measured at the midsection of the AAA cavity from the longitudinal
z-axis to the posterior and anterior walls, respectively. An aneurysm for which only the anterior
wall is dilated whereas the posterior wall is approximately flat, corresponds to a value of β = 0.2.
A value of β = 1.0 corresponds to azymuthal symmetry (figure 2.9).

r

R

Figure 2.9: Graphical description of the azymuthal asymmetry.

Following the aforementioned procedure, three different geometries of AAA models with a
total length of 23 cm were generated, varying the value of the asymmetry parameter between
β = 1.0 (azymuthal symmetry) and β = 0.2 (only the anterior wall is dilated), with a medium
value of β = 0.6. A value of d = 2 cm was adopted for the undilated diameter at the inlet and
outlet sections and a maximum diameter of 6 cm was considered at the midsection of the AAA
sac. The common value used from a clinical outlook to recommend surgical repair or endovascular
intervention is AAA transverse diameter between 5 and 6 cm [47]. Consequently, a maximum
diameter of 5.5 cm was chosen for this study, since it is comparable to the largest transverse
dimension for assessment of rupture potential. Considering that this is not a patient-specific
study, the uniform wall thickness assumption seems to be reasonable. In this manner, a total
constant wall thickness of 2.67 mm has been adopted in all the geometries. For the layer-separated
models, the thicknesses for intima, media and adventitia remain the same as the ones considered
previously (0.68, 0.94 and 1.05 mm). The resultant geometries are depicted in Figure 2.10.

The effect of the luminal pressure exerted by the pulsating blood flow was simulated by a
time-dependent pressure waveform. Time dependency is given by a Fourier series representations
of the waveforms, and is generalized as

f(t) = A0 +
n∑
k=1

[Ak cos(2πkt) +Bk sin(2πkt)] , (2.1)
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(a) β = 1.0.

(b) β = 0.6.

(c) β = 0.2.

Figure 2.10: Idealized geometries of the AAA models considered in the study.

where n is the number of harmonics used to reproduce the in vivo measurements of luminal
pressure (n = 7) [14]. This waveforms are triphasic pulses first reported by Mills et al. [28], and
are depicted in Figure 2.11.

Applying proper boundary conditions referred to a cylindrical coordinate system, the con-
straining effect caused by the iliac and renal arteries was simulated by imposing zero longitudinal
displacement at both ends of the undilated sections [7]. Even though this type of boundary
conditions smooths the numerical response [17], the length of the AAA must be enough not to
produce stiffening effects along the geometry and stress concentrations at the proximal and distal
parts. The three-dimensional AAA geometries were meshed using ABAQUS/CAE preprocessor
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Figure 2.11: In vivo luminal pulsatile pressure waveform applied in the dynamic model. Peak systolic
pressure occurs at t = 0.5 seconds and has a value of 16 kPa. Reproduced from [28] and [14].

with a minimum of three linear solid hexaedral hybrid elements (C3D8H) across the thickness
of each layer. Table 2.2 shows a quantitative summary of the meshes with the total number of
elements and nodes used for each AAA model.

Figure 2.12: Sagittal view of the typical mesh used for the simulations. This geometry corresponds to
β = 0.2.
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AAA model Number of elements Number of nodes

Three-layered Intact Three-layered Intact

β = 1.0 514, 080 466, 480 1, 091, 910 1, 005, 040
β = 0.6 481, 500 440, 608 1, 017, 288 949, 560
β = 0.2 649, 000 548, 544 1, 370, 611 1, 202, 011

Table 2.2: Number of elements and nodes used in the three different parametrized geometrical models
of AAAs studied.

Distributions of the circumferential stresses, as well as displacement fields in end-systolic
conditions for three different values of β are depicted in Figure 2.13 and Figure 2.15, respectively
(only one-half of the geometry cut by a sagittal plane is shown for clarity). First of all, it is
important to mention that we have taken the circumferential stress as the prevailing stress, since
the maximum principal stresses are almost perfectly aligned with the circumferential direction.
This is in agreement with some data on aneurysms that identify normal stresses as a more
reliable indicator than Von Mises criterion, which is not a suitable measure in this case because
of the absence of shear stress [48, 49]. As it can be seen in Figure 2.13, both the intact and the
three-layered artery present a stress gradient through-the-thickness of the aneurysmal wall, in
which the inner surface absorbs the maximum circumferential stresses. As shown in Figure 2.14,
this through-the-thickness stress variation is fairly flat for the intact artery, with maximum stress
differences that go from 0.20 to 0.23 MPa in the β = 0.2 geometrical model. However, as previously
noticed in the plane strain rings, the three-layered AAA models show a remarkable discontinuous
gradient that is manifested in huge stress jumps at the interface between the layers, where the
major stress drop is found at the interface between the intima and the media in all the models,
with a maximum value of 0.54 MPa in the most asymmetric aneurysm (β = 0.2).

That said, and in good agreement with Rodriguez et al. [17], it is worth pointing out that the
degree of asymmetry is rather considerable: for aneurysms with the same length, wall thickness
and diameter of the undilated sections, the peak wall stresses increase by 32% from the symmetric
(β = 1.0) to the most asymmetric geometry (β = 0.2). Thus, we can say that the geometry,
and more specifically the asymmetry of the sac is a determining factor to rupture potential
since the strongest stress gradients are always located at inflection points of the curvature. For
β = 1.0 the maximum stress is distributed uniformly around the sac, as well as the highest
displacements are, which is logical due to the azymuthal symmetry. In case of the β = 0.6 and
β = 0.2 geometries, notable stress concentrations occur for both the three-layered and the intact
wall at the superolateral part of the sac. By contrast, the maximum displacements are found in
the inferior part, which is fairly flat. This phenomena responds to the principles of the membrane
theory of shells: Because the artery wall can be considered as a structural element with a small
thickness compared to the other dimensions, we can say that the stiffening at the inflection points
is due to the combination between membrane and bending forces produced by the curvature, while
the flatness of the inferior part only generates bending forces which leads to a softer response
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with larger displacements. Table 2.3 summarises the peak wall stresses obtained for each model
and establish a comparison, in terms of stresses and displacements, between the three-layered and
the intact models with respect to the former one. Regarding the peak stress values, we observe an
overall stress difference of about 30% that slightly increases with asymmetry, reaching a maximum
∆σmax of 35.9% for the β = 0.2 aneurysm. Contrastingly, variations in displacements decrease
with the asymmetry from a noteworthy ∆Umax about 54% for β = 1.0 to a insignificant difference
of 0.75 % for the β = 0.2 geometry.

To assess the effects of the heterogeneity of the aneurysmatic wall and the material anisotropy,
we have compared our results for the hyperelastic three-layered anisotropic (H3A) AAA wall with
the results obtained by Scotti et al. [14, 50], where also peak wall stresses and displacements are
analysed in parametrized aneurysms. We have chosen this study to establish a comparison, given
that the parameterization of the AAA geometries is the same, considering β = r/R to define the
asymmetry of sac, and a similar systolic pressure of 15.7 kPa (118 mmHg). Comparisons are
made between our H3A wall, in which each layer work independently, a elastic isotropic mono-
layered (EIM) and a hyperelastic isotropic mono-layered wall (HIM), based on the Mooney-Rivlin
constitutive model. The results of the comparison are collected in Table 2.4. In terms of stresses,
first of all we observe how the percentage difference increases with the asymmetry: for the elastic
wall (EIM) the range of difference is between 43 and 54%, while for the HIM, given that the
hyperelastic wall can undergo larger deformations than the elastic one, and therefore develops
higher stresses, the differences are between 38 and 51%, both maximum differences associated
with the most asymmetric AAA (β = 0.2). Regarding the displacements, for the EIM wall the
differences become greater as the asymmetry increases, reaching a maximum variation of 48%.
Strikingly, for asymmetry values of β = 1.0 and β = 0.6 the HIM wall undergo larger deformations
than the H3A wall, with a maximum difference of 9.43%, probably due to the stiffening effect
produced by tunica intima in the inner surface of the artery. The displacements of the most
asymmetric AAA geometries, β = 0.2, are quite similar with a small variation of just 0.75%.

One of the main advantages of the layer-separated models is that we can easily isolate each
layer to see the maximum stresses of each layer. The circumferential stress distributions of
adventitia, media and intima during systole are depicted in Figure 2.16c for the three different
AAA models. As it can be seen, the patterns of circumferential stresses remain unchanged from
the anterior to the posterior wall of the AAA in all cases, with a uniform distribution around the
sac for the symmetric model, and stress concentrations at the inflection points of the curvature of
the sac in the asymmetric aneurysms as previously commented, which means that, despite the
significant stress jumps found in Figure 2.14, there is a strong stress transmission from the inner
to the outer wall of the sac that is damped by the tunica intima, which acts as a natural stiffener
for the artery. Table 2.5 summarises the percentage of stress absorbed by each layer with respect
to the total circumferential stress. As shown, the intima is the stiffest layer, absorbing a minimum
of 0.443 MPa and maximum of 0.645 MPa during peak systolic, which leads to stress absorptions
of 80.49% and 80.42% for the β = 1.0 and β = 0.2 respectively and a mean absorption of 78.33%.
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The adventitia is the softest layer, with a range of values between 0.193 and 0.251 MPa, and a
mean stress absorption of 7.68%, while the media is a bit stiffer with a 11.05%. These results
are in accordance with the previously analysed uniaxially loaded aorta strips and the inflated
plane strain rings, where the early stiffening effect of the intima due to the high dispersion of the
collagen fibers was predicted.

(a) Intact (b) Three-layered

Figure 2.13: Contour plots of the circumferential stresses in the intact and in the three-layered
aneurysmatic wall for asymmetry values of β = 1.0, β = 0.6 and β = 0.2 during peak systolic. The
magnitude of the stress is given in MPa.

AAA model σmax (MPa) Umax (mm) ∆σmax% ∆Umax%
Three-layered Intact Three-layered Intact

β = 1.0 0.44 0.14 2.65 1.22 31.8 53.96
β = 0.6 0.52 0.17 3.76 3.24 32.7 13.82
β = 0.2 0.64 0.23 6.65 6.60 35.9 0.75

Table 2.3: Maximum wall stresses σmax and displacements Umax in the different asymmetric AAA models
and comparison between the three-layered and the intact artery wall. ∆σmax and ∆Umax show the %
difference of the stress and displacement obtained with the three-layered and intact AAA models with
respect to the baseline three-layered method.
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Figure 2.14: Through-the-thickness circumferential stresses in the three-layered (solid curves) and intact
(dashed curves) AAA wall for asymmetry values of β = 1.0, β = 0.6 and β = 0.2 .

(a) Intact (b) Three-layered

Figure 2.15: Displacement fields in the intact and in the three-layered aneurysmal wall for asymmetry
values of β = 1.0, β = 0.6 and β = 0.2 during peak systolic, in mm.
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(a) Adventitia (b) Media (c) Intima

Figure 2.16: Circumferential stress distributions in adventitia, media and intima layers for β = 1.0,
β = 0.6 and β = 0.2 models. The magnitude of the stress is given in MPa.
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AAA model σmax (MPa) Umax (mm)

EIM HIM H3A EIM HIM H3A

β = 1.0 0.25(−43.18%) 0.27(−38.63%) 0.44 1.71(−35.47%) 2.90(+9.43%) 2.65
β = 0.6 0.26(−50.00%) 0.28(−46.15%) 0.52 2.50(−33.51%) 4.30(+14.36%) 3.76
β = 0.2 0.29(−54.68%) 0.31(−51.56%) 0.64 3.40(−48.87%) 6.60(−0.75%) 6.65

Table 2.4: Maximum wall stresses σmax and displacements Umax in the different asymmetric hyperelastic
anisotropic three-layered (H3A) AAA models at a peak systolic pressure of 16 kPa (120 mmHg) and
comparison with the results obtained by Scotti et al. [14, 50] for the same geometries and a similar
systolic blood pressure of 15.7 kPa for an elastic isotropic mono-layer (EIM) and a hyperelastic isotropic
(Mooney-Rivlin) mono-layer AAA wall. The parenthesis show the % differences of the EIM and the HIM
with respect to the H3A.

AAA model σmax (MPa)

Adventitia Media Intima

β = 1.0 0.043(7.83%) 0.063(11.49%) 0.443(80.69%)
β = 0.6 0.051(7.12%) 0.073(10.19%) 0.529(73.88%)
β = 0.2 0.065(8.10%) 0.092(11.47%) 0.645(80.42%)

Mean stress absorption 7.68% 11.05% 78.33%

Table 2.5: Maximum wall stresses (MPa) in adventitia, media and intima and mean percentage of
peak wall stress absorbed by each layer for the three different AAA models. The parenthesis show the
percentage of stress absorbed by each layer with respect to the total circumferential stress.
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Fluid-structure interaction in abdominal aortic
aneurysms

3.1 Cardiovascular fluid-structure interaction

From the structural point of view, two main loads should be considered when assessing the risk of
rupture of AAAs. These are normal pressure and wall shear stress, both of them exerted by the
pulsating blood flow. The effect of the former one has already been analyzed during systole in the
static and dynamic finite element simulations by the implementation of the pressure waveform
shown in figure 2.11, whereas, the influence of the shear stresses produced by the hemodynamic
forces has not been appraised yet. Therefore, in order to obtain more reliable physiological results,
a numerical approach by means of computational fluid dynamics (CFD) is required. CFD has
been used successfully during the last 20 years as a versatile tool for a wide range of clinical
applications, such as flow studies in compliant large vessels, medical devices like blood pumps and
drug-eluting stents or examination of surgical treatments [51]. In this manner we can study the
blood flow as a incompressible fluid governed by Navier-Stokes equations with Reynolds numbers
at end-systolic conditions between 1 in small arterioles and 4000 in the largest artery, which means
laminar flow, and moderate turbulence is shown only under weird recirculation circumstances.
However, only by using CFD we cannot reproduce realistic conditions since the hyperelastic
behavior of soft tissue previously explained is not taken into account. Thus, this is when Fluid
Structure Interaction (FSI) comes into play.

The FSI coupling technique is among the most common computational tools in the bioengi-
neering field for the simulation of blood flow in compliant vessels and artificial heart valves.
The interaction between fluid and solid domains can be established either with a monolithic or
partitioned approach (figure 3.1). In the monolithic approach, the governing equations of the fluid
and solid domains are solved simultaneously at the interface using a single solver, while in the
partitioned interactions, the equations are solved separately with two distinct solvers. Numerically
speaking, FSI problems can be grouped by the type of coupling used into weakly (loosely) and
strongly coupled algorithms, as shown in figure 3.2. In the loose or weak coupling, the fluid and
solid parts are solved separately. Firstly, the received forces from the fluid domain are applied to
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the structure as boundary conditions, so the structural displacements can be obtained. Then,
the fluid domain is modified in accordance with the new boundaries, and the new flow field is
given. The information exchange between the fluid and the structure at the interface is done only
once per time step and not at every time-step. Loose coupling algorithms are usually explicit
methods, since the displacement of the solid depends on the conditions of the fluid at the previous
time step. On the other hand, in strongly coupled algorithms the fluid and solid parts are solved
simultaneously using a monolithic scheme. To do this, the governing equations of both domains
are discretized in a single system of equations, and the boundary conditions are applied on the
interface. In this case, the data exchange between the solvers occurs at each iteration within a
step time, which is necessary for the simulation to remain stable. This iterative communication
between the fluid and and solid codes is known as implicit or "iterative staggered". Strong coupling
is required when a compliant structure, like an artery, interacts with a heavy incompressible
fluid, like blood [52]. In this investigation, the FSI simulations are carried out by implicitly
coupling Abaqus and Simcenter STAR-CCM+. The communication is done through the SIMULIA
Co-Simulation Engine (CSE). In this co-simulation, Abaqus solves the structural domain and
STAR-CCM+ the fluid domain. The fluid and solid domains considered in this Chapter were also
generated by means of the in-house code aneu.py [45]. The resultant geometries, as well as the
definition of the different FSI boundaries, are shown in figure 3.3.

Figure 3.1: Monolithic and partitioned approach schemes (taken from [53]).

3.2 Mesh morphing. The ALE strategy

A strategy is needed for the CFD solver to account for the changes in the position and shape of
the structure. The method used in this study to track the deformation of the cells that conform
the fluid grid is Mesh Morphing. Morphing is done by modifying the positions of the fluid vertices
in such a manner that the fluid grid can keep a reasonable quality while conforming to the solid
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Figure 3.2: Coupling approaches for FSI (taken from [54]).

structure. This operation can be considered as topological constant, since the shape of the cells of
the fluid grid can change over the time, while they maintain the same neighbours. The arbitrary
motion of the mesh is taken into account by solving the fluid transport equations using the
Arbitrary Lagrangian Eulerian (ALE) technique. The ALE technique combines the advantages
of classical Lagrangian and Eulerian kinematical descriptions in order to lead with problems
that involve large distortions of the computational domain, and get accurate solutions at the
material interfaces [56]. The initialisation of the movement imposed by the morpher algorithm on
the mesh is defined through a set of controls points. Each control point is related to a known
displacement vector, which is used to generate a interpolation field that allows to calculate the
new positions of the vertices. The interpolation method used for this purpose is called Radial
Basis Functions (RBFs, in short). RBFs generates the interpolation field by a system of equations,
which are created using the aforementioned control points and their displacements, where the
known displacement, d′i, is calculated as

d′i =
N∑
j=1

fb,j (rij)λj +α, (3.1)

in which fb,j (rij) is a radial basis function of the form

fb,j (rij) =
√
r2
ij + c2

j (3.2)

and rij is the magnitude of the distance between two vertices:

rij = |xi − xj | (3.3)

In the former equations, λ is the expansion coefficient, xi is the position of vertex i, N is the
number of control vertices, and cj is the basis constant. The basis constant is set to zero in
STAR-CCM+[52]. The constant vector α is used to satisfy the additional constraint that

N∑
j=1

λj = 0 (3.4)
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Figure 3.3: Definition of the domains for an idealized geometric model of β = 0.2 (taken from [55]).
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This additional constraint bounds the expansion for large x. Equation (3.1) and equation (3.4)
are solved to give the Cartesian components of all λj and the components of constant vector α.
This results in the desired interpolation field:

d(x) =
N∑
j=1

fb,j (rj)λj +α (3.5)

where fb,j applies at all vertices in the mesh, that is

fb,j (r) =
√
r2 + c2

j (3.6)

r = |x− xj | . (3.7)

This equation can now be used to move mesh vertices by the calculated displacement d′.

3.3 FSI governing equations

Since FSI is a two-field problem, its mathematical description must include the governing equations
of the fluid and solid parts. In the current research, the blood flow is assumed to be an
incompressible, laminar and Newtonian fluid, while for the artery wall a hyperelastic anisotropic
material law will be implied on a geometrically non-linear idealized AAA model.

3.3.1 Governing equations for the fluid domain

The incompressible Newtonian fluid assumption, which is considered in this Technical Project, is
mathematically described by Navier-Stokes equation. This assumption is reasonable since the
blood viscosity is relatively constant at the typical high rates of shear found in the aorta [57, 58].
As commented previously, the FSI co-simulation is done by coupling Abaqus, for the resolution
of the structural domain, and STAR-CCM+, for the fluid domain. The ALE methodology is
automatically activated in STAR-CCM+ when a moving boundary is identified in a FSI co-
simulation. The ALE formulation for momentum and mass conservation equations for the fluid
domain are given by

ρf
∂vf

∂t

∣∣∣∣∣
ξ

+ ρf [(vf − v̂) · ∇] vf −∇ · τf = fBf (3.8)

∇ · vf = 0 (3.9)

where ξ is the referential domain, and the fluid stress tensor (τf) and strain rate (εij) are expressed
as

τf = −pδij + 2µfεij (3.10)

εij = 1
2(∇vf +∇vTf ) (3.11)
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vf is the fluid velocity vector, v̂ is the moving coordinate velocity, and ρf is the fluid density.
In the ALE formulation, vf − v̂ is the relative velocity of the fluid with respect to the moving
coordinate velocity. The quantity p is the fluid pressure, δij the Kronecker delta, and µf the
molecular viscosity of the fluid. For the fluid domain the fluid body force per unite volume fBf is
neglected and gravitational acceleration in the streamwise direction is considered marginal.

3.3.2 Governing equations for the solid domain

In contrast to the ALE formulation for the fluid domain equations, a Lagrangian coordinate
system is adopted for the solid domain. The governing equation for the solid domain is the
momentum conservation given by

∇ · τs + fBs = ρsd̈s, (3.12)

where ρs is the wall density, τs is the Kirchhoff solid stress tensor, fBs are the body forces per
unit volume, and d̈s is the local acceleration of the solid. The Kirchhoff stress tensor can be
decomposed as follows

τ = τvol + τ̄ , (3.13)

with
τvol = JpI (3.14)

and
τ̄ = P : τ̃ (3.15)

where τ̃ is the fictitious isochoric Kirchhoff stress, which is written as

τ̄ = 2F̄ ∂Ψ
∂C̄

F̄ T (3.16)

where τvol and τ̄ are the volumetric and isochoric parts of the Kirchhoff stress tensor. J represents
the determinant of the deformation gradient, p is the hydrostatic pressure and I the identity
matrix. P = I− 1

3I ⊗ I is the fourth-order projection tensor that furnishes the physically correct
deviatoric operator in the Eulerian description, so that [P : (·)] : I = 0 [11]. Ψ, F̄ and C̄ represent
the total strain energy function, the distorsional part of the deformation gradient and the modified
Cauchy-Green left tensor, respectively, and they have already been defined in Chapter 1.2.

3.3.3 Governing coupling equations

The FSI constraints applied to the interface (ΓFSI) are:

1. Continuity of displacements (us = uf).

2. Continuity of velocity (vs = vf , no slip and no-penetration condition).

3. Equilibrium of tractions (τsn = τfn).
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3.4 Boundary conditions

The boundary conditions applied to the fluid domain are based on the ones defined by Scotti et
al. in [14], and they are:

1. A time dependent fully parabolic velocity profile at ΓFinlet, where fluid enters.

2. A time dependent normal traction due to luminal pressure at ΓFoutlet, where fluid leaves.

3. A slip boundary condition at the walls of the fluid domain ΓFFSI.

The pressure waveform applied to the outlet of the fluid domain is the same as the one used for
the finite element simulations of parametrized idealized geometrical models of AAAs, which is
shown in figure 2.11. The definition of the velocity profile applied to the inlet is done in the same
way as the pressure waveform. The time dependency is also given by the Fourier series defined in
equation (2.1), but this time using N = 18 harmonics to reproduce the in vivo measurements of
luminal velocity. As shown in figure 3.4 peak systolic flow is reached at 0.4 s with a resultant flow
velocity of 439 mm/s, and a pressure of 110 mmHg. The Reynolds number for the flow is 1640
based on the peak inlet velocity and 410 based on time averaged inlet velocity. All these values
are in accordance with data of human abdominal aorta under resting conditions. Regarding the
solid domain, the boundary conditions applied are the same as the ones explained in Chapter 2.3,
where the constraining effect caused by the iliac and renal arteries was simulated by imposing
zero longitudinal displacement at both ends of the undilated sections [7, 17].

3.5 Model description

This section provides a detailed description of the main numerical, and physical characteristics
of the computational model. Concerning the material properties of the fluid domain, blood is
modeled as a Newtonian fluid with a constant density of ρf = 1.05 g/cm3 and a molecular viscosity
of µf = 3.5 cP, as proposed by [59]. For the arterial tissue, we assume a mono-layered hyperelastic
anisotropic wall with a constitutive law given by the Holzapfel-Gasser-Ogden form [11], which has
been explained in section 1.2. The material constants are summarized in and they were obtained
by Weisbecker et al. [12] for an intact aortic wall, which represents the equivalent or mean
mechanical behavior of a three-layer composite wall made up of intima, media and adventitia.

Layer µ(MPa) k1(MPa) k2(−) ϕ(◦) κ(−)
Intact wall 0.019 5.15 8.64 38.8 0.24

Table 3.1: Constitutive parameters for the intact (three-layer composite) wall of the human abdominal
aorta (taken from [12]).
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Figure 3.4: In vivo luminal pulsatile velocity and pressure waveforms applied to the inlet and outlet
sections of the fluid domain. Reproduced from [28] and [14]. Data extraction points at systolic and
diastolic peaks are marked with stars.

Regarding the domain discretization, a polyhedral volume mesh with a total of 117,537 cells
(708,290 vertices) was used for the fluid domain, while 166,816 eight-node hybrid solid elements
(C3D8H), with two elements through-the-thickness of the wall, were required for the solid part. The
resultant meshes for both fluid and solid domains are depicted in figure 3.5. Computations were
performed in a high performance computing (HPC) cluster with a theoretical peak performance
of 7.1 TFLOPs. All fluid-structure interaction simulations where run using the asymmetric
configuration 28p-12p, where the first term (28p) indicates the computing cores assigned to the
solid part, while the second one (12) matches with the cores in the fluid domain. This is the
fastest option (approximately 57 hours), with 2 gigabytes of physical memory assigned to each
processor.

According to Fernández et al. [55], some stability problems were found during the FSI
simulations. These numerical instabilities were associated to high frequency oscillations caused
by the pulsatile nature of blood flow acting on a thin and soft tissue wall, and the absence of
surrounding biological matter, like the spine or the stomach, that would damp the structure in a
physiological environment. In order to solve this problem, the time integration scheme of the fluid
and solid domains had to be changed. First of all, the discretization of the flow equations is done
by means of the backward Euler strategy, since it is an unconditionally stable numerical method.
On the other hand, for the time integration of the structural part, the Hilbert-Hughes-Taylor
(HHT) method was used. This is a one step implicit method belonging to the integration formulas
of the Newmark family, that allows for energy dissipation without degrading the order of accuracy
(which is not possible with the regular Newmark method), and it is unconditionally stable [60].
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(a) Mesh for the fluid domain.

(b) Mesh for the solid domain.

Figure 3.5: Meshes for β = 0.2 idealized geometries.

The HHT integrator does not pertain the mathematical expressions of the Newmark method
formulas, but the time-discrete momentum equation is modified as follows

Mq̈n+1 + (1 + αH)Cq̇n+1 − αHCq̇n + (1 + αH)Kqn+1 − αHKqn = F (t̃n+1) (3.17)

with

t̃n+1 = tn + (1 + αH)h (3.18)

where M ,C and K are the mass, damping and stiffness matrices, respectively. The force F
is dependent of the time, t, and q represents the set of coordinates used in the undeformed
configuration. The parameters γ and βH are calculated as

γ = 1− 2αH
2 βH = (1− αH)2

4 (3.19)
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The default values to ensure the unconditional stability and the second order accuracy of the
method are summarized in table 3.2. The smaller value of αH , the more damping is introduced in
the structure. Note that if αH = 1 we obtain the Newmark method, and if αH = 0 we have the
trapezoidal formula with no numerical damping.

αH βH γ

−0.3 0.4225 0.8

Table 3.2: Default parameters for the Hilber-Hughes-Taylor integrator.

Since an unstable behavior was still noticed when decreasing the time step, not only a numerical
damping was induced in the structure, but a material one as well. Classical Rayleigh damping was
added to the structural model to simulate the physical damping essence of the surrounding tissue.
This model expresses damping as a linear combination of the mass and stiffness matrices, that is,

C = αRM + βRK (3.20)

where αR and βR are the mass proportional parameter and the stiffness proportional parameter,
respectively. These coefficients were selected for the first natural frequency of the aneurysm and
a damping ratio of 20%, obtaining a value of 4 for the mass proportional parameter, αR, and a
value of 0.0015 for the stiffness proportional coefficient, βR. The influence of including both, HHT
integrator and Rayleigh damping, is shown in figure 3.6 and figure 3.7. The general structural
damping observed in figure 3.6 is similar to the one reported Fernández et al. [55], even though
our mass proportional and stiffness proportional parameters are higher since we are modeling the
arterial wall as hyperelastic anisotropic, so it can undergo larger deformations and the material
damping has to be greater to reproduce the physiological conditions.

3.6 Results

The results of the FSI simulations are shown in figures 3.9-3.16 in terms of circumferential stresses,
displacements, flow velocities and fluid pressure distributions, for the data extraction points
marked in figure 3.4 at systolic and diastolic peaks. Regarding the flow dynamics, it is clear that
the blood flow is governed by the non-linear shape of the aneurysm sac, and the compliance of
the vessel. From t=0 to t=0.4 s, the velocity streamlines show a pure laminar flow with absence
of vortices, which is a flow path commonly associated with systolic acceleration [14]. This is
due to the compliance of the vessel, which ejects the vortex downstream when the AAA cavity
is fully expanded. Once systolic peak has been reached, the expansion of the sac produced by
the storage of strain energy in the hyperelastic artery wall starts to decrease, causing a reverse
pressure gradient that yields to flow reversal and vorticity. An example of flow reversal is shown in
figure 3.8. As it can be seen, vortices start to develop in the midsection of the sac, and they travel
upstream along the anterior wall towards the end of the aneurysm, where they are fully dissipated.
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Figure 3.6: Evolution of the acceleration at node 1 (figure 3.7c), when combining the HHT integrator
and Rayleigh damping.

The wall pressure distributions in the fluid are very similar to the ones reported by [50]. During
systolic acceleration, the pressure gradient is given by a higher pressure at the outlet rather than
at the inlet. The deceleration of the velocity inlet leads to a phase shift in the flow dynamics that
produces a opposing pressure waveform. This pressure drop yields to the recirculation effects
previously commented.

Concerning the stresses in the artery wall, we have chosen this time Von Mises criterion as the
prevailing stress quantity to analyze the risk of rupture, since we want to account for the shear
forces produced by blood flow. The stress patterns observed are very similar to the ones reported
previously in figure 2.13, where the maximum values are found at the supero-lateral part of the sac,
where the curvature changes. The maximum values for the Von Mises equivalent stress occur at
t=0.5 s, with 0.32 MPa, while the minimum is shown during peak diastolic pressure at t=0.3 s, with
0.18 MPa. Figure 3.17 shows a comparison of the Von Mises stress evolution during a full cardiac
cycle with the FSI and CSS (Computational Solid Stress) simulations performed by Fernández et al.
[55], which used the same geometry and boundary conditions but different material models. First
of all, we can see how the peak wall stress for the FSI-hyperelastic anisotropic, CSS-elastic and
CSS-hyperelastic isotropic is delayed with respect to the FSI-hyperelastic isotropic and FSI-elastic
models. The former one occurs at t=0.5, just when the peak systolic pressure is reached, while
the latest appears a bit earlier at t=0.4 s. Strikingly, the hyperelastic isotropic wall reaches a
slightly higher peak wall stress than the hyperelastic anisotropic wall (0.33 vs 0.32). However, the
stress profile of the FSI-hiperelastic isotropic wall shows an unstable behavior with noteworthy
fluctuations that would probably be damped during a longer cardiac cycle.
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(b) Influence of Rayleigh material damping.

(c) Location of node 1 in the solid domain.

Figure 3.7: Acceleration at node 1 with and without material and numerical damping properties.
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Figure 3.8: Observed recirculation zones during systolic deceleration at t=0.581 s. The reduction of
shear stresses produced by flow reversal is one of the main causes of thrombus formation.

With regard to the displacements, the inclusion of blood flow shear forces acting on an isotropic
tissue wall leads to a non-symmetric deformation with a significant clockwise rotation of the
aneurysm sac, which is almost laid down on the XY plane. Due to this, the FSI displacement field
is dissimilar to the one obtained previously for the CSS models, in which the maximum value
was located at the inferior part of the sac, while this time is found in the lateral part. When
comparing with other constitutive models (see figure 3.18), we observe huge differences between
the elastic and hyperelastic isotropic with respect to the hyperelastic anistropic wall. Maximum
displacements close to 9 mm are found in the FSI-hyperelastic anistropic models, whereas the
others do not go over 3.5 mm. In order to evaluate the degree of anisotropy of the material, radial
and circumferential displacements have been obtained at three different nodes in the solid domain
mesh. Figure 3.19 plots the time evolution of these displacement components for the comparative
node, N1, the node with maximum resultant displacement, N2, and another one located at the
superolateral part of the AAA sac, N3. As it can be seen, the radial component at N3 and N2 is
three times higher than any circumferential displacement. This fact indicates that, the elements
near the sac sustain using in-plane membrane forces, whereas the elements close to the flat part
of the geometry resist by bending stresses.

All the results in terms of stresses and displacements are summarized in table 3.3.

Technique Max. VM stress (MPa) Max. Disp. magnitude (mm) Time (s)

FSI-Hyperelastic anistropic 0.32 8.47 0.5
FSI-Hyperelastic isotropic 0.33(+3.03%) 3.21(−62.10%) 0.42
CSS-Hyperelastic isotropic 0.28 (−12.5%) 2.40 (−71.66%) 0.49
FSI-Elastic isotropic 0.29 (−9.37%) 2.90 (−65.76%) 0.46
CSS-Elastic isotropic 0.25 (−24.24%) 2.35 (−72.25%) 0.49

Table 3.3: Maximum Von Mises wall stresses and resultant displacements predicted by FSI and CSS
techniques for β = 0.2. The parentesis indicate the difference with respect to the FSI-hyperelastic
anisotropic model.
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(a) Side view of velocity streamlines at t=0.3 s.

(b) Fluid pressure at the wall at t=0.3 s.
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(c) Sagittal view of the Von Mises stress distribution at t=0.3 s, in MPa.

Figure 3.9: Wall stress results for β = 0.2 at pressure diastolic peak.
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A-A’

(a) Perspective view of the velocity streamlines at t=0.3 s. The
sectional cut A-A’ is depicted in the undeformed configuration
of the sac.

(b) Sectional cut A-A’ of the velocity field in midsection of the
aneurysm sac at t=0.3 s.
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(c) Displacement field at t = 0.3 s in mm.

Figure 3.10: Results for β = 0.2 at pressure diastolic peak.
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(a) Side view of velocity streamlines at t=0.4 s.

(b) Fluid pressure at the wall at t=0.4 s.
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(c) Sagittal view of the Von Mises stress distribution at t=0.4 s, in MPa.

Figure 3.11: Wall stress results for β = 0.2 at velocity systolic peak.
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A-A’

(a) Perspective view of the velocity streamlines at t=0.4 s. The
sectional cut A-A’ is depicted in the undeformed configuration
of the sac.

(b) Sectional cut A-A’ of the velocity field in the midsection of the
aneurysm sac at t=0.4 s.
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(c) Displacement field at t = 0.4 s in mm.

Figure 3.12: Displacement results for β = 0.2 at velocity systolic peak.



42 Chapter 3

(a) Side view of velocity streamlines at t=0.5 s.

(b) Fluid pressure at the wall at t=0.5 s.
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(c) Sagittal view of the Von Mises stress distribution at t=0.5 s, in MPa.

Figure 3.13: Wall stress results for β = 0.2 at pressure systolic peak.
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A-A’

(a) Perspective view of the velocity streamlines at t=0.5 s. The
sectional cut A-A’ is depicted in the undeformed configuration
of the sac.

(b) Sectional cut A-A’ of the velocity field in the midsection of the
aneurysm sac at t=0.5 s.
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(c) Displacement field at t = 0.5 s in mm.

Figure 3.14: Displacement results for β = 0.2 at pressure systolic peak.
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(a) Side view of velocity streamlines at t=0.7 s.

(b) Fluid pressure at the wall at t=0.7 s.
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(c) Sagittal view of the Von Mises stress distribution at t=0.7 s, in MPa.

Figure 3.15: Wall stress results for β = 0.2 at velocity diastolic peak.
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A-A’

(a) Perspective view of the velocity streamlines at t=0.7 s. The
sectional cut A-A’ is depicted in the undeformed configuration
of the sac.

(b) Sectional cut A-A’ of the velocity field in the midsection of the
aneurysm sac at t=0.7 s.
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(c) Displacement field at t = 0.7 s in mm.

Figure 3.16: Displacement results for β = 0.2 at velocity diastolic peak.
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(a) Evolution of wall stresses during the cardiac cycle for different constitutive models and
numerical techniques. The results of the CSS (Computational Solid Stress) and FSI (Fluid-
Structure Interaction) models for the elastic and hyperelastic isotropic walls have been taken
from [55].

E1

(b) Location of element 1 in the mesh.

Figure 3.17: Comparison of Von Mises wall stresses during a full cardiac cycle.
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Figure 3.18: Comparison of wall displacements during a full cardiac cycle.
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Conclusions and future research

4.1 Conclusions

This investigation attempts to demonstrate the importance of considering the mechanical contribu-
tion of the three layers that make up aortic tissue during the development of intimal hyperplasia.
To do this, finite element analyses were performed on three different idealized geometries of AAA
models subjected to realistic loading conditions. These simulations were calibrated considering
the structural response of the aneurysmal tissue through uniaxial tests of aorta strips cut in
the circumferential and axial directions and plane strain human aorta rings under systolic blood
pressure.

Resultant stresses and displacements were obtained for an intact (mono-layered) artery wall,
which represents the mean structural response of the three-layer composite tissue, and a three-
layered wall, in which each layer has been modeled separately with its own material properties using
a continuum mesh, observing differences of about 30% concerning the stresses and a maximum of
53%, which decreased to 0.75% with the asymmetry, regarding the displacements. This comparison
was also carried out with other studies performed on idealized AAA geometries with the same
parameterization, but with different constitutive models. We found out maximum differences of
54% in terms of stresses and 48% in terms of displacements for an elastic isotropic mono-layered
wall (EIM), and 51% and 14% for a hyperelastic isotropic mono-layer wall (HIM), with respect to
a three-layered hyperelastic anisotropic wall (H3A).

Regarding the idealized geometry used, our results corroborate that the stress distribution is
strongly dependent on the asymmetry of the sac, inasmuch as symmetric AAAs showed a uniform
stress distribution around the sac, while the most asymmetric geometries presented noteworthy
stress concentrations in the inflection points of the curvature of the sac, leading to greater peak
wall stresses, and therefore higher rupture potential.

The obtained results show an early exponential stiffening of tunica intima that makes it
definitely load-bearing when it becomes thickened because of intimal hyperplasia. This phenomena
may be caused by two factors. The first one is the collagenization; The diffuse thickening of the
innermost layer of the abdominal aorta has been associated by many studies with collagenization
of the elastic and hyper-plastic layers, which, from the mechanical point of view, increases the
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dispersion in the families of collagen fibers, governed by κ in the constitutive model used, and
stiffens up the intimal layer. The second factor could be related to the proliferation of smooth
muscle cells between the endothelium and the internal elastic lamina. In any case, the intimal
layer shows the highest percentages of stress absorption.

Our results suggest that tunica intima may act as a stiffener when thickened due to hyperplasia,
since it has a mean stress absorption ratio of 78%, while adventitia and media only absorb 7%
and 11% of the total circumferential stress on the AAA, respectively. This fact points out the
necessity of including tunica intima in multi-layered models of AAAS to obtain accurate peak
wall stresses, and to improve the rupture risk assessment.

On the other hand, the consideration of shear forces through FSI simulations is important to
account for non-symmetric stress and displacement distributions, which completely change the
prediction of rupture. It has been demonstrated that the results obtained with Computational Solid
Stress models (CSS) underestimate the FSI-predicted maximum values by 24% in terms of stresses,
and 72% in terms of displacements. However, even taking into account shear stresses, mono-layered
models are not enough accurate to capture the real mechanical behavior of aneurysmatic tissue,
since three-layered models show higher peak wall stresses (0.64 vs 0.32 MPa) . Therefore, a
FSI analysis of a three-layered aneurysm considering a hyperelastic anisotropic wall would be
promising to warrant further investigation in this field.

4.2 Future research

In respect of future studies, first of all they must consider the implementation of residual stresses
in the arterial modeling to get more realistic results, since residual stresses/stretches have been
proved to produce a significant impact on the mechanical response of aortic tissue to external
loads [13]. The dynamic mechanobiological processes are also important to take into account
the evolution of lesion growth and remodeling of the wall properties. In this sense, growth and
remodeling techniques (G&R) will be necessary to analyze how the mechanical environment
influences the tissue’s developing morphology. Last but not least, it is crucial to consider that,
the existence of intraluminal thrombus (ILT) is associated with early rupture of abdominal aortic
aneurysm. Therefore, future and more advanced CSS and FSI models must include ILT as an
additional rupture risk factor.



4.2. Future research 51



52 Chapter 4



Bibliography

[1] LeFevre, M. L. “Screening for abdominal aortic aneurysm: U.S. Preventive Services Task
Force recommendation statement.” Annals of internal medicine 161.4 (2014), pp. 281–290.

[2] Kühnl, A., Erk, A., Trenner, M., Salvermoser, M., Schmid, V., and Eckstein, H.-H. “Incidence,
Treatment and Mortality in Patients with Abdominal Aortic Aneurysms: An Analysis of
Hospital Discharge Data from 2005–2014”. Deutsches Ärzteblatt International 114.22-23
(2017), pp. 391–398.

[3] Lederle, F. A., Wilson, S. E., Johnson, G. R., Reinke, D. B., Littooy, F. N., Acher, C. W.,
Ballard, D. J., Messina, L. M., Gordon, I. L., Chute, E. P., Krupski, W. C., Busuttil, S. J.,
Barone, G. W., Sparks, S., Graham, L. M., Rapp, J. H., Makaroun, M. S., Moneta, G. L.,
Cambria, R. A., Makhoul, R. G., Eton, D., Ansel, H. J., Freischlag, J. A., and Bandyk, D.
“Immediate repair compared with surveillance of small abdominal aortic aneurysms.” The
New England journal of medicine 346.19 (2002), pp. 1437–1444.

[4] Hans, S. S., Jareunpoon, O., Balasubramaniam, M., and Zelenock, G. B. “Size and location
of thrombus in intact and ruptured abdominal aortic aneurysms”. Journal of Vascular
Surgery 41.4 (2005), pp. 584–588.

[5] Grootenboer, N., Bosch, J. L., Hendriks, J. M., and Sambeek, M. R. H. M. van. Epidemiology,
Aetiology, Risk of Rupture and Treatment of Abdominal Aortic Aneurysms: Does Sex Matter?
2009.

[6] Rodríguez, J. F., Martufi, G., Doblaré, M., and Finol, E. A. “The effect of material model
formulation in the stress analysis of abdominal aortic aneurysms”. Annals of biomedical
engineering 37.11 (2009), p. 2218.

[7] Vorp, D. A., Raghavan, M., and Webster, M. W. “Mechanical wall stress in abdominal
aortic aneurysm: Influence of diameter and asymmetry”. Journal of Vascular Surgery 27.4
(1998), pp. 632–639.

[8] Raghavan, M. L., Webster, M. W., and Vorp, D. A. “Ex vivo biomechanical behavior
of abdominal aortic aneurysm: assessment using a new mathematical model.” Annals of
biomedical engineering 24.5 (1996), pp. 573–582.



54 Bibliography

[9] Movat, H. Z., More, R. H., and Haust, M. D. “The Diffuse Intimal Thickening of the Human
Aorta with Aging”. The American Journal of Pathology 34.6 (1958), pp. 1023–1031.

[10] Glagov, S. and Zarins, C. K. “Is intimal hyperplasia an adaptive response or a pathologic
process? Observations on the nature of nonatherosclerotic intimal thickening”. Journal of
Vascular Surgery 10.5 (1989), pp. 571–573.

[11] Gasser, T. C., Ogden, R. W., and Holzapfel, G. A. “Hyperelastic modelling of arterial layers
with distributed collagen fibre orientations”. Journal of The Royal Society Interface 3.6
(2006), pp. 15–35.

[12] Weisbecker, H., Pierce, D. M., Regitnig, P., and Holzapfel, G. A. “Layer-specific damage
experiments and modeling of human thoracic and abdominal aortas with non-atherosclerotic
intimal thickening”. Journal of the Mechanical Behavior of Biomedical Materials 12 (2012),
pp. 93–106.

[13] Alastrué, V., Peña, E., Martínez, M. Á., and Doblaré, M. “Assessing the Use of the
"Opening Angle Method" to Enforce Residual Stresses in Patient-Specific Arteries”. Annals
of Biomedical Engineering 35.10 (2007), pp. 1821–1837.

[14] Scotti, C. M., Shkolnik, A. D., Muluk, S. C., and Finol, E. a. “Fluid-structure interaction
in abdominal aortic aneurysms: effects of asymmetry and wall thickness”. BioMedical
Engineering Online 4.1 (2005), p. 64.

[15] Raghavan, M. L. and Vorp, D. A. “Toward a biomechanical tool to evaluate rupture
potential of abdominal aortic aneurysm: identification of a finite strain constitutive model
and evaluation of its applicability”. Journal of Biomechanics 33.4 (2000), pp. 475–482.

[16] Xenos, M., Rambhia, S. H., Alemu, Y., Einav, S., Labropoulos, N., Tassiopoulos, A., Ricotta,
J. J., and Bluestein, D. “Patient-Based Abdominal Aortic Aneurysm Rupture Risk Prediction
with Fluid Structure Interaction Modeling”. Annals of Biomedical Engineering 38.11 (2010),
pp. 3323–3337.

[17] Rodríguez, J. F., Ruiz, C., Doblaré, M., and Holzapfel, G. A. “Mechanical Stresses in
Abdominal Aortic Aneurysms: Influence of Diameter, Asymmetry, and Material Anisotropy”.
Journal of Biomechanical Engineering 130.2 (2008), p. 021023.

[18] Joldes, G. R., Miller, K., Wittek, A., and Doyle, B. “A simple, effective and clinically
applicable method to compute abdominal aortic aneurysm wall stress”. Journal of the
Mechanical Behavior of Biomedical Materials 58 (2016), pp. 139–148.

[19] Ahamed, T., Dorfmann, L., and Ogden, R. “Modelling of residually stressed materials with
application to AAA”. Journal of the Mechanical Behavior of Biomedical Materials 61 (2016),
pp. 221–234.

[20] Labrosse, M. R., Gerson, E. R., Veinot, J. P., and Beller, C. J. “Mechanical characterization
of human aortas from pressurization testing and a paradigm shift for circumferential residual
stress”. Journal of the Mechanical Behavior of Biomedical Materials 17 (2013), pp. 44–55.



Bibliography 55

[21] Gao, F., Watanabe, M., and Matsuzawa, T. “Stress analysis in a layered aortic arch model
under pulsatile blood flow”. Biomedical engineering online 5 (2006), pp. 25–25.

[22] Gao, F., Ohta, O., and Matsuzawa, T. “Fluid-structure interaction in layered aortic arch
aneurysm model: assessing the combined influence of arch aneurysm and wall stiffness”.
Australasian Physics & Engineering Sciences in Medicine 31.1 (2008), p. 32.

[23] Gao, F., Ueda, H., Gang, L., and Okada, H. “Fluid structure interaction simulation in
three-layered aortic aneurysm model under pulsatile flow: Comparison of wrapping and
stenting”. Journal of Biomechanics 46.7 (2013), pp. 1335–1342.

[24] Simsek, F. G. and Kwon, Y. W. “Investigation of material modeling in fluid-structure
interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and
fully developed aneurysms”. Journal of biological physics 41.2 (2015), pp. 173–201.

[25] Gholipour, A., Ghayesh, M. H., Zander, A., and Mahajan, R. “Three-dimensional biome-
chanics of coronary arteries”. International Journal of Engineering Science 130 (2018),
pp. 93–114.

[26] Pierce, D. M., Fastl, T. E., Rodríguez-Vila, B., Verbrugghe, P., Fourneau, I., Maleux,
G., Herijgers, P., Gomez, E. J., and Holzapfel, G. A. “A method for incorporating three-
dimensional residual stretches/stresses into patient-specific finite element simulations of
arteries”. Journal of the Mechanical Behavior of Biomedical Materials 47 (2015), pp. 147–
164.

[27] Strbac, V., Pierce, D., Rodríguez-Vila, B., Sloten, J. V., and Famaey, N. “Rupture risk in
abdominal aortic aneurysms: A realistic assessment of the explicit GPU approach”. Journal
of Biomechanics 56 (2017), pp. 1–9.

[28] Mills, C. J., Gabe, I. T., Gault, J. H., Mason, D. T., Ross, J., Braunwald, E., and Shillingford,
J. P. “Pressure-flow relationships and vascular impedance in man”. Cardiovascular Research
4.4 (1970), pp. 405–417.

[29] Martino, E. D., Guadagni, G., Fumero, A., Ballerini, G., Spirito, R., Biglioli, P., and
Redaelli, A. “Fluid–structure interaction within realistic three-dimensional models of the
aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm”. Medical
Engineering & Physics 23.9 (2001), pp. 647–655.

[30] Li, Z. and Kleinstreuer, C. “A comparison between different asymmetric abdominal aortic
aneurysm morphologies employing computational fluid–structure interaction analysis”.
European Journal of Mechanics - B/Fluids 26.5 (2007), pp. 615–631.

[31] Georgakarakos, E., Ioannou, C., Kamarianakis, Y., Papaharilaou, Y., Kostas, T., Manousaki,
E., and Katsamouris, A. “The Role of Geometric Parameters in the Prediction of Abdominal
Aortic Aneurysm Wall Stress”. European Journal of Vascular and Endovascular Surgery
39.1 (2010), pp. 42–48.



56 Bibliography

[32] Wang, X. and Li, X. “Computational simulation of aortic aneurysm using FSI method:
Influence of blood viscosity on aneurismal dynamic behaviors”. Computers in Biology and
Medicine 41.9 (2011), pp. 812–821.

[33] Raghavan, M., Vorp, D. A., Federle, M. P., Makaroun, M. S., and Webster, M. W. “Wall
stress distribution on three-dimensionally reconstructed models of human abdominal aortic
aneurysm”. Journal of Vascular Surgery 31.4 (2000), pp. 760–769.

[34] Wang, D. H., Makaroun, M. S., Webster, M. W., and Vorp, D. A. “Effect of intraluminal
thrombus on wall stress in patient-specific models of abdominal aortic aneurysm”. Journal
of Vascular Surgery 36.3 (2002), pp. 598–604.

[35] Chandra, S., Raut, S. S., Jana, A., Biederman, R. W., Doyle, M., Muluk, S. C., and Finol,
E. A. “Fluid-Structure Interaction Modeling of Abdominal Aortic Aneurysms: The Impact
of Patient-Specific Inflow Conditions and Fluid/Solid Coupling”. Journal of Biomechanical
Engineering 135.8 (2013), pp. 081001–081001-14.

[36] Li, Z.-Y., U-King-Im, J., Tang, T. Y., Soh, E., See, T. C., and Gillard, J. H. “Impact of
calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic
aneurysm”. Journal of Vascular Surgery 47.5 (2008), pp. 928–935.

[37] Maier, A., Gee, M. W., Reeps, C., Eckstein, H.-H., and Wall, W. A. “Impact of calcifications
on patient-specific wall stress analysis of abdominal aortic aneurysms”. Biomechanics and
Modeling in Mechanobiology 9.5 (2010), pp. 511–521.

[38] Geest, J. P. V., Sacks, M. S., and Vorp, D. A. “The effects of aneurysm on the biaxial
mechanical behavior of human abdominal aorta”. Journal of Biomechanics 39.7 (2006),
pp. 1324–1334.

[39] Vito, R. P. and Hickey, J. “The mechanical properties of soft tissues—II: The elastic response
of arterial segments”. Journal of Biomechanics 13.11 (1980), pp. 951–957.

[40] Holzapfel, G. A., Gasser, T. C., and Ogden, R. W. “A New Constitutive Framework for
Arterial Wall Mechanics and a Comparative Study of Material Models”. Journal of elasticity
and the physical science of solids 61.1 (2000), pp. 1–48.

[41] Schriefl, A. J., Zeindlinger, G., Pierce, D. M., Regitnig, P., and Holzapfel, G. A. “Determi-
nation of the layer-specific distributed collagen fibre orientations in human thoracic and
abdominal aortas and common iliac arteries”. Journal of The Royal Society Interface 9.71
(2012), pp. 1275–1286.

[42] ABAQUS 6.14 Documentation. Dassault Systèmes. 2014.

[43] Holzapfel, G. A., Sommer, G., and Regitnig, P. “Anisotropic Mechanical Properties of Tissue
Components in Human Atherosclerotic Plaques”. Journal of Biomechanical Engineering
126.5 (2004), pp. 657–665.



Bibliography 57

[44] Holzapfel, G. A., Sommer, G., Gasser, C. T., and Regitnig, P. “Determination of layer-
specific mechanical properties of human coronary arteries with nonatherosclerotic intimal
thickening and related constitutive modeling”. American Journal of Physiology-Heart and
Circulatory Physiology 289.5 (2005), H2048–H2058.

[45] Díaz, J. Aneupy. A Python code for parametric generation of abdominal aortic aneurysms.
http://github.com/jacobo-diaz/aneupy. Universidade da Coruña, 2016.

[46] SALOME 7.5.1. The open source integration platform for numerical simulation. 2015.

[47] Galland, R., Whiteley, M., and Magee, T. “The fate of patients undergoing surveillance
of small abdominal aortic aneurysms”. European Journal of Vascular and Endovascular
Surgery 16.2 (1998), pp. 104–109.

[48] Raghavan, M. L., Kratzberg, J., Castro de Tolosa, E. M. M., Hanaoka, M. M., Walker,
P., Silva, E. S. da, and Tolosa, E. de. “Regional distribution of wall thickness and failure
properties of human abdominal aortic aneurysm.” Journal of biomechanics 39.16 (2006),
pp. 3010–3016.

[49] Raghavan, M. L., Hanaoka, M. M., Kratzberg, J. A., Higuchi, M. d. L., and Silva, E. S. da.
“Biomechanical failure properties and microstructural content of ruptured and unruptured
abdominal aortic aneurysms”. Journal of Biomechanics 44.13 (2011), pp. 2501–2507.

[50] Scotti, C. M., Jimenez, J., Muluk, S. C., and Finol, E. A. “Wall stress and flow dynamics
in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction”.
Computer Methods in Biomechanics and Biomedical Engineering 11.3 (2008), pp. 301–322.

[51] Bazilevs, Y., Alamo, J. C. del, and Humphrey, J. D. “From imaging to prediction: Emerging
non-invasive methods in pediatric cardiology”. Progress in Pediatric Cardiology 30.1-2 (2010),
pp. 81–89.

[52] STAR CCM+ Documentation. Siemens PLM Software. 2018.

[53] Sillem, A. “Feasibility study of a tire hydroplaning simulation in a monolithic finite ele-
ment code using a coupled Eulerian-Lagrangian method”. MA thesis. Faculty of electrical
engineering, mathematics and computer science. Delft institute of applied mathematics.,
2008.

[54] Sieber., G. “Numerical Simulation of Fluid-Structure Interaction Using Loose Coupling
Methods”. PhD thesis. Vom Fachbereich Maschinenbau an der Technischen Universität
Darmstadt., 2002.

[55] Fernández García, M. and Romera Rodríguez Jacobo Díaz García, L. E. “Stress-strain analy-
sis of abdominal aortic aneurysms considering the fluid structure-interaction”. Universidade
da Coruña (2016).

[56] Donea, J., Huerta, A., Ponthot, J.-P., and Rodríguez-Ferran, A. “Arbitrary Lagrangian-
Eulerian Methods”. Encyclopedia of Computational Mechanics (2004), pp. 413–437.

[57] Milnor, W. Hemodynamics. Baltimore: Williams and Wilkins, 1989.

http://github.com/jacobo-diaz/aneupy


58 Chapter 4

[58] Fournier, R. Basic transport phenomena in biomedical engineering. Philadelphia: Taylor &
Francis, 1998.

[59] Finol, E. A., Keyhani, K., and Amon, C. H. “The Effect of Asymmetry in Abdominal
Aortic Aneurysms Under Physiologically Realistic Pulsatile Flow Conditions”. Journal of
Biomechanical Engineering 125.2 (2003), p. 207.

[60] Hilber, H. M., Hughes, T. J. R., and Taylor, R. L. “Improved numerical dissipation for
time integration algorithms in structural dynamics”. Earthquake Engineering & Structural
Dynamics 5.3 (1977), pp. 283–292.


	Acknowledgments
	Abstract
	Resumen
	Resumo
	Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 State-of-the-art
	1.2 Constitutive behavior of arterial tissue
	1.3 Computational modeling

	2 A multi-layered in-silico mode for rupture risk evaluation in abdominal aortic aneurysms
	2.1 Model calibration. Finite element models of uniaxial test of aorta strips
	2.2 Human aorta plane strain rings
	2.3 Parametrized idealized geometrical models of AAAs

	3 Fluid-structure interaction in abdominal aortic aneurysms
	3.1 Cardiovascular fluid-structure interaction
	3.2 Mesh morphing. The ALE strategy
	3.3 FSI governing equations
	3.3.1 Governing equations for the fluid domain
	3.3.2 Governing equations for the solid domain
	3.3.3 Governing coupling equations

	3.4 Boundary conditions
	3.5 Model description
	3.6 Results

	4 Conclusions and future research
	4.1 Conclusions
	4.2 Future research

	Bibliography

